Китайские математики Чжу Сипин и Цао Хуайдун опубликовали в июньском номере журнала The Asian Journal of Mathematics статью со своим доказательством гипотезы Пуанкаре, одной из сложнейших математических задач.
Профессор университета Чжуншань Чжу Сипин и работающий в США профессор университета Лехай Цао Хуайдун напечатали статью «Полное доказательство гипотезы Пуанкаре и геометрической гипотезы: применение теории Гамильтона-Перельмана о потоках Риччи».
Китайский математик-эмигрант, живущий в США, обладатель Филдсовской премии, профессор Цюй Чэнтун считает указанный материал завершающей работой в доказательстве гипотезы Пуанкаре, пишет в понедельник центральная газета «Жэньимнь жибао».
«Гипотеза Пуанкаре представляет собой главный поток в области топологии и геометрии, на нее обращают внимание многие математики мира, они прилагают усилия по ее исследованию, доказательство и завершение работы имеют огромное значение», - отметил Цюй Чэнтун.
Цюй Чэнтун заявил, что достижения двух китайских математиков являются передовыми в сфере фундаментальных исследований. Представленное доказательство поможет научным работникам глубже познать пространство, в котором мы живем, и окажет значительное влияние на развитие физики и техники.
Гипотеза была сформулирована в 1904 году французским ученым Анри Пуанкаре и утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере.