Ученые объяснили мощное излучение от черных дыр, слияния звезд и вспышек сверхновых

W. Paech, F. Hofmann

Международная команда ученых, включающая российских исследователей, провела подробные наблюдения за вспышкой новой звезды V906 Carinae, находящейся от нас на расстоянии 13 000 световых лет. Данные с трех спутников, два из которых являются участниками миссий NASA, позволили доказать, что основная часть видимого света во время взрыва на поверхности новой звезды возникает из-за ударных волн. Они генерируют гамма-лучи, которые и вызывают свечение в видимом спектре. Таким образом возможно объяснить мощное излучение, сопровождающее слияние звезд, вспышки сверхновых и поглощение звезд черными дырами. Работа опубликована в журнале Nature Astronomy. Исследования российских ученых поддержаны грантом Российского научного фонда (РНФ).

Звезда, относящаяся к классу новых, обычно возникает в системе, состоящей из белого карлика и звезды-компаньона. На поверхности белого карлика уже не идут термоядерные реакции, и он представляет собой плотный медленно остывающий сгусток звездного пепла, не намного превышающий по размерам Землю. В системе со звездой-компаньоном образуется поток водорода, текущий с ее внешних слоев к белому карлику. Газ накапливается на его поверхности до тех пор, пока не достигаются критическая температура и давление. Это приводит к взрывной термоядерной реакции в слое водорода и формированию ударной волны — резкому изменению температуры, давления и плотности, распространяющемуся внутри среды. Взрыв срывает вещество внешней оболочки белого карлика в окружающее пространство. С каждым таким событием выделяется энергия, в 10 000–100 000 раз превышающая годовую энергию Солнца.

Астрономы каждый год обнаруживают около 10 звезд этого класса в нашей Галактике. В 2018 году международная команда ученых, объединяющая исследователей из 40 научных организаций, наблюдала вспышку звездной системы V906 Carinae, находящейся от нас на расстоянии около 13 000 световых лет в созвездии Киль. Использованный в работе космический телескоп NASA Fermi Gamma-ray предназначен для наблюдения удаленных объектов в спектре гамма-излучения. Такие электромагнитные волны характеризуются наибольшей энергетичностью и возникают во время столкновения частиц, намного меньших, чем атомы, с экстремально высокими энергиями. Гамма-лучи появлялись в результате ударной волны примерно в то же время, что и вспышки видимого света. Это согласовывалось с существующим мнением о том, что ударные волны во время вспышки производят больше света, чем продолжающееся термоядерное горение на поверхности белого карлика. Наблюдения со спутника BRITE-Toronto в видимом диапазоне наглядно подтвердили эту точку зрения. Каждый день он возвращал c орбиты на Землю около 600 измерений изменения яркости этой системы.

«Во время пика яркости BRITE-Toronto зарегистрировал восемь коротких световых вспышек, каждая следующая была почти в два раза сильнее предыдущей, — рассказывает Кирилл Соколовский, кандидат физико-математических наук, сотрудник Государственного астрономического института имени П. К. Штернберга МГУ. — Мы видели намеки на эти события и в наземных измерениях, но никогда еще не наблюдали их так ясно. Обычно мы отслеживаем звезды этого класса с земли с помощью гораздо меньшего количества наблюдений, кроме того, между измерениями часто возникают большие перерывы, и поэтому не удается зафиксировать некоторые быстрые изменения».

Сравнение данных с Fermi и BRITE показало, что вспышки света достигают своего максимума в диапазоне гамма-излучения за несколько часов до наибольшей яркости в видимой области спектра. То есть гамма-излучение от ударных волн вызывает последующее свечение в видимом диапазоне. Ученым также удалось зафиксировать рентгеновское излучение этой звездной системы с помощью космического телескопа NuSTAR, но гамма-лучи намного превосходили его по интенсивности. Вероятно, большая часть высокоэнергетического рентгеновского излучения поглощается и переизлучается в более низких энергиях, в конечном итоге оставляя только свечение видимого диапазона.

Кроме того, с помощью Большого южноафриканского телескопа SALT были получены оптические спектры высокого разрешения этого уникального объекта: «Дело в том, что звездная система расположена на Южном небе и никаким образом не может наблюдаться телескопами, расположенными в Северном полушарии, в том числе и на территории России. Только небольшая часть информации, которая содержится в этих спектрах, приведена в данной статье, но мы готовим отдельную публикацию. Как астроном, занимающийся в основном оптической спектроскопией, я был вовлечен в получение данных спектров и их спектральную обработку и анализ», — сообщил руководитель проекта по гранту РНФ Юрий Балега, доктор физико-математических наук, вице-президент РАН, научный руководитель Специальной астрофизической обсерватории РАН (Нижний Архыз, Карачаево-Черкесская Республика).

Теперь с помощью ударных волн стало возможным объяснить мощное излучение, появляющееся в результате слияния звезд или вспышек сверхновых и гораздо более масштабных взрывов, например поглощения звезд черными дырами.