Шестой спутник Юпитера Европа, хоть и уступает по размерам четырем другим галилеевым спутникам, остается, тем не менее, одним из самых крупных спутников в Солнечной системе и самым интригующим. Есть все основания предполагать, что под его поверхностным ледяным панцирем, толщина которого пока неизвестна, но, по некоторым расчетам, может достигать нескольких километров, залегает жидкий океан глубиной до 160 км, сформированный благодаря разогреву внутреннего вещества Европы под действием приливных сил.
Анализ наблюдательных данных показывает также, что подповерхностный океан Европы может быть насыщен кислородом в концентрациях, достаточных для развития аэробных форм жизни, но подтвердить или опровергнуть их существование могут лишь инструментальные исследования «на месте».
Для их осуществления на 2020 год NASA, Роскосмосом и Европейским космическим агентством уже запланирована совместная экспедиция в составе нескольких автоматических станций, одна из которых должна опуститься на поверхность спутника. О бурении ледяного панциря речь пока не идет (такой проект рассматривался, но был отклонен), однако из-за ротации вещества следы жизни, если она действительно есть в жидком слое внутреннего океана, могут быть обнаружены и в поверхностном льду Европы.
Между тем оптимизм астробиологов могут изрядно подпортить выводы их коллег Мэттью Пассека и Ричарда Гринберга из Университета Южной Флориды, опубликовавших в журнале Astrobiology статью с настораживающим названием «Ацидификация подповерхностного океана Европы вследствие снабжения окислителями». Согласно их расчетам, химические соединения из группы сильных окислителей, обнаруженные на поверхности Европы,
могут свести на нет все шансы на зарождение жизни в жидких внутренностях спутника, уровень кислотности которых будет зашкаливать настолько, что сделает невозможным формирование большеразмерных органических молекул и клеточных мембран.
Окислители — вещества, в состав которых входят атомы, присоединяющие электроны в ходе химической реакции, — относительно редко встречаются в Солнечной системе, изобилующей химическими восстановителями — водородом и углеродом, которые быстро реагируют с кислородом, в том числе входящим в состав других химических соединений, например перекиси водорода, с последующим образованием воды и оксида углерода. Но, похоже, Европа стала исключением: ее поверхность как раз изобилует такими сильными окислителями, как перекись водорода, накопившаяся за миллиарды лет бомбардировки поверхностного водяного льда Европы заряженными частицами, разогнанными в мощном магнитном поле Юпитера.
Согласно построенной авторами статьи модели, в процессе медленной ротации поверхностного и внутреннего вещества Европы, в состав которого входит большое количество воды в разных агрегатных состояниях, перекись водорода могла попадать во внутренние жидкие области, реагировать с растворенными в воде сульфидами и другими соединениями с образованием серосодержащих и других кислот. Если этот процесс длился хотя бы половину возраста Европы, то
уровень свободного кислорода, растворенного в подповерхностном океане, оказался бы критически низким и недостаточным для развития жизни, а уровень его pH — слишком высоким, примерно 2,6. «То есть примерно таким, как в кислых прохладительных напитках»,
— уточняет Пасек.
Столь высокая кислотность, превращающая океан в едкую жидкость, представляет известную проблему для существования развитых многоклеточных форм жизни, но более примитивные формы могут адаптироваться к таком уровню pH, так что если внутри Европы и зародилась жизнь, то она, скорее всего, будет напоминать микробов-ацидофилов, обнаруженных в насыщенной сульфидами и железом Рио-Тинто — реке в Испании, «мертвая» вода которой отличается экстремально высоким уровнем кислотности
На возможное возражение, что скальные породы, слагающие дно подповерхностного океана, могут нейтрализовать кислоты, образовавшиеся в результате поступления окислителей из поверхностных слоев спутника, авторы приводят расчеты, согласно которым, даже если такие минералы и есть в составе донных пород, их количества было бы совершенно недостаточно для снижения уровня pH в жидких внутренностях Европы даже при самых оптимистичных сценариях.
За миллиарды лет эволюции Европы на ее ледяной поверхности накопилось слишком много переокисленного водорода, обязанного попасть внутрь спутника в процессе ротации воды,
и даже консервативная оценка количеств этой перекиси дает неутешительную картину с точки зрения эволюции органической материи на основе углерода, а другие формы живой материи нам пока что неизвестны.
Впрочем, шансы обнаружить в океане Европы что-нибудь более сложное, чем живущие в кислоте микробы, все же остаются: вместо растворимых в кислоте кальциевых скелетов животные Европы могут использовать скелеты из голубых фосфатов — минералов на основе фосфора, например таких, как водный фосфат железа вивианит (Fe3(PO4)2·2H2O, см. фото). Но узнать, какого цвета кости у «европейцев» и существуют ли они вообще, можно, лишь слетав к этому спутнику и изучив его поближе.