Обезьяньи ошибки стали человеком

Главные отличия человека от обезьян – результат генетической ошибки

Владимир Грамм
Самые заметные генетические отличия человека от шимпанзе – не продукт естественного отбора, а результат ошибок при копировании ДНК и «предвзятости» генетического аппарата, который их исправляет. По крайней мере, признаки, по которым учёные до сих пор распознавали положительный отбор, пора пересмотреть.

Человеческая раса гордится многочисленными отличиями от ближайших сохранившихся родственников по древу жизни – шимпанзе и горилл. Прямохождение, большой объём мозга, отличия в строении ладоней или выносливость через 10 миллионов лет после разделения с высшими обезьянами позволили человеку занять то место, где он сейчас находится. И как бы ни менялись обстоятельства, именно мы остаёмся царями природы, а наши способности перекраивать все под себя в последние века даже стали слегка пугать.

Благодаря эволюционной теории и понятию естественного отбора у этой гордости даже появились какие-то разумные основания. Как отдельного человека закаляют испытания, так и весь наш вид в целом стал таким сильным благодаря непрекращающейся борьбе с силами природы. Эволюция – это естественный отбор плюс неизбежные мутации, благодаря которым каждый новый ребёнок чуть-чуть не похож на обоих своих родителей, плюс способность передать эти мутации по наследству.

Не исключено, что несколько миллионов лет назад такое «уродство», как чуть изогнутая скобой стопа, позволила какому-то ребёнку убежать от хищника, который легко догнал его более плоскостопых родителей. С ребёнком убежали и его гены и в дальнейшем распространились по всей человеческой популяции.

Разумеется, такие мутации, которые дают преимущество, – лишь капля в море бесконечного числа изменений генетического кода, которые в лучшем случае никак не сказываются на способностях человека, а в худшем – не дают ему даже появиться на свет.

Однако учёные давно нашли способ хотя бы статистически отличать гены, которые менялись случайным образом и никак не сказывались на живучести, от тех, что были подвержены естественному отбору.

Сделать это помогает избыточность генетического кода. Поскольку 64 комбинации троек генетических букв-нуклеотидов кодируют в ДНК человека всего 21 аминокислоту и пару знаков препинания, то далеко не всякая замена одной буквы приведёт к замене одной аминокислоты на другую в синтезируемом белке. Именно по соотношению немых замен генетических букв в коде белка к заменам несинонимичным и можно понять, случайно ли то или иное отличие нашего белка от аналогичного белка шимпанзе или оно – результат естественного отбора.

Это несинонимичные замены дали нам и большой мозг, и прямохождение, и возможность брать в руки камни. Отношение числа несинонимичных замен к немым очень велико для генов, связанных с работой сердца, поддерживающих клеток мозга, эндокринной системы. Среди аналогичных приобретений последних тысячелетий можно вспомнить набор генов, позволивших Homo sapiens пить молоко в зрелом возрасте, или наличие голубых глаз. Хотя последние, быть может, никакого эволюционного преимущества не дают – слишком мало времени прошло, чтобы проверить эту гипотезу.

Однако не исключено, что мы напрасно гордимся многими из своих качеств, считая их результатом борьбы со стихией и опасностями, с которыми сталкивались наши предки.

Как показали Мэтью Уэбстер из шведского Университета Упсалы и его коллеги из Швеции и США, генетический аппарат и белковый состав человеческого организма устроены таким образом, что после исправления ошибок в случайно или намеренно разорванной ДНК отремонтированные гены начинают походить на результат положительного естественного отбора. И соответствующий «сигнал» в отношении несинонимичных замен к немым является ложным: предки, у которых появилась соответствующая мутация, не смело сражались с силами природы, а лежали на печи и часто размножались.

Ложный сигнал вносит так называемое смещение конверсии генов при их рекомбинации. Хромосомы иногда обмениваются участками. Это случается и при делении клеток, и при их разделении без копирования, в результате которого образуются яйцеклетки и сперматозоиды. И поскольку фрагменты ДНК, которыми обмениваются хромосомы, не всегда совпадают, может так случиться, что в двойной спирали друг против друга оказываются некомплементарные друг другу азотистые основания: напротив аденина (А) оказывается не положенный ему тимин (Т), а цитозин (Ц) или гуанин (Г), которые должны встречаться только в паре друг с другом. Бывает, что такие несоответствия случайно возникают и при спокойной репликации ДНК безо всякого обмена участками.

К счастью, клетка умеет быстро ремонтировать такие участки, подбирая «правильную», комплементарную пару.

Однако как выбрать, какое из оснований в «несовместной» паре А-Ц заменить? Поставить Т вместо Ц или Г вместо А?

Ясно, что здесь появляется возможность для «злоупотреблений»: надо понять, какая из букв пары «новая», а какая – стояла здесь раньше, до рекомбинации.

В большинстве случаев ремонтные ферменты принимают правильное решение, успевая сделать свою работу прежде, чем на новые буквы А оказываются надеты метиловые «шапочки». Этот процесс чуть запаздывает за репликацией, и увидев аденин «с непокрытой головой», фермент тут же понимает, где в двойной спирали правильная цепочка. По ней он и подстраивает неправильную, «безшапочную».

Однако иногда возникают ошибки. И как выяснили биологи лишь в конце XX века, здесь ферменты ведут себя предвзято: они чаще доверяют Ц и Г и реже – А и Т.

Завидев некомплементарную пару А-Ц, ферменты чуть чаще поменяют её на Г-Ц, чем на А-Т. Механизм этого явления до конца не установлен, хотя на его счёт есть несколько гипотез.

Уэбстер и его коллеги, опубликовавшие свою работу в последнем выпуске PLoS Biology, показали, что эта предвзятость изменяет «диагностическое» отношение несинонимичных замен к синонимичным – и в среднем в пользу первых.

Учёные сравнили геномы человека, шимпанзе и макаки и выделили в них те кодирующие сегменты ДНК, которые в промежутке от шимпанзе к человеку эволюционировали быстрее (в сравнении с эволюцией от макаки к шимпанзе). В соответствии со стандартной схемой, именно соответствующие этим генам человеческие черты стоит считать результатом положительного естественного отбора – и поводом гордиться за наших предков.

На этих участках оказалось непропорционально много замен вида А-Т -> Г-Ц, да и сами участки подозрительно концентрировались к тем регионам хромосом, где особенно часто происходят события рекомбинации – особенно в мужских клетках.

Некоторое время назад французские учёные под руководством Николя Гальтье показали, что «предвзятость» ферментов у приматов настолько велика, что вполне способна превозмочь отрицательный отбор и способствовать распространению, казалось бы, неблагоприятных мутаций в популяции. Работа Уэбстера и его коллег показывает, что с человеком именно так и произошло.

Подробный анализ этих генов ещё лишь предстоит провести, они кодируют белки, работающие по всему организму – от сердечных мышц до хвостов сперматозоидов; есть среди них и гены, провоцирующие раннее развитие болезни Паркинсона. Однако уже сейчас пора готовиться к тому, что многие из тех отличий от обезьян, которыми мы привыкли гордиться, могут оказаться тривиальным следствием ошибок при копировании ДНК и предвзятости генетического аппарата.