Подписывайтесь на Газету.Ru в Telegram Публикуем там только самое важное и интересное!
Новые комментарии +

Математики обучили машину квантовой механике так, что она больше не ошибается

Ученые Сколковского института науки и технологии улучшили алгоритм, позволяющий теоретически предсказывать самую стабильную структуру соединений. Результат был представлен на конференции APS March Meeting 2019 в Бостоне. Исследования поддержаны грантом Российского научного фонда.

Задача поиска новых материалов -– одна из тех, что с каждым годом становятся только актуальнее. До настоящего времени большую часть новых материалов открывали методом проб и ошибок, что обходится достаточно дорого. За последнее время квантовая механика сильно шагнула вперед, и благодаря этому поиск стабильной структуры свелся к написанию программы. Поиск стабильной структуры называют квантово-механическим моделированием, и для вычислений, которые необходимы при этом, используют суперкомпьютеры с очень большой мощностью.

«На квантово-механическое моделирование материалов затрачивается около 30% мощностей современных суперкомпьютеров. Это одна из самых вычислительно сложных и одновременно востребованных задач», – комментирует автор доклада математик Александр Шапеев, кандидат математических наук, старший преподаватель центра по научным и инженерным вычислительным технологиям для задач с большими массивами данных Сколковского института науки и технологий.

Для того чтобы понять, насколько стабильно соединение, нужно рассчитать энергию каждого атома. Основной метод, который представили в семидесятых годах и используют по сей день, – теория функционала плотности (в англоязычных источниках Density Functional Theory, DFT). Он хорош тем, что позволяет рассчитывать энергию системы с большим количеством атомов, для которой невозможно решить уравнение Шредингера. Соединение представляют как множество взаимодействующих друг с другом электронов, которые удерживает решетка из атомных ядер. Главная особенность метода заключается в том, что для определения состояния системы не нужно учитывать каждый отдельно взятый электрон – многоэлектронную волновую функцию заменяют электронной плотностью. Такая замена делает уравнение Шредингера решаемым. Результаты, которые получают в результате DFT, довольно точные, но расчет больших структур может занимать много времени, вплоть до нескольких месяцев.

Решением стало использование машинного обучения, которое позволяет получить результат гораздо быстрее. В случае метода DFT необходимо предоставить компьютеру 100 000 разных структур, из которых он будет получать самую стабильную. При машинном обучении достаточно знать ответ для 1000 соединений, а для остальных 99 000 машина все вычислит сама. Однако из-за того, что все соединения немного различаются, в результате появляется ошибка: соединение, найденное машинным обучением, может быть менее стабильным, чем полученное методом DFT. То есть на ответ, полученный машинным обучением, можно опираться только приблизительно.

Проблему этой неточности решил Александр Шапеев. Идея в том, чтобы относиться к результату, полученному машинным обучением, не как к конечному ответу. С его помощью можно оценить, насколько велика вероятность того, что найденная структура — нужная. Ответ, который дает машинное обучение, «досчитывается» методом DFT. То есть все еще необходимо рассчитывать 1000 структур методом DFT, и так же, как и при обычном машинном обучении, остальные 99000 машина оценит сама. В конце вместо того, чтобы принять ответ за окончательный, берут еще 1000 самых стабильных структур и «досчитывают» их методом DFT. Таким образом, результат получается настолько же точным, как при «чистом» DFT, и тем не менее на порядки более быстрым. Иными словами, машинное обучение проводит предварительный отбор структур и так добавляется еще один этап в конкурсе на лучшую структуру. «Долгие расчеты – один из главных барьеров на пути к мечте инженеров проектировать материалы на компьютере одновременно с дизайном изделий. Возьмем, например, процесс изготовления автомобилей. На сегодняшний день машины делают так: дизайнеры проектируют конструкцию, а инженеры собирают ее из уже готовых материалов, которые придумали много лет назад. Придумывать новые сплавы долго, поэтому используют старые, проверенные временем, пусть даже не оптимальные. Мечта инженера – возможность теоретического поиска лучшего сплава для заданного изделия. Представьте, насколько было бы лучше не тратить годы в лаборатории, а просто взять и рассчитать сплав одновременно с дизайном конструкции. Наше исследование – шаг на пути к этой мечте», – говорит Александр Шапеев.

Новости и материалы
На Украине заявили, что США стали «полезными» лишь к концу срока Байдена
В России к Новому году заготовили елок почти на 15 млрд рублей
Президент РФС пригласит главу УЕФА на матч сборной России
В Киеве за ночь взорвались два трансформатора
Песков рассказал о мерах по предотвращению дефицита товаров в новых регионах
В автомобилях Hyundai выявили серьезную опасность
Украина хочет показать Трампу, что ставка на продолжение конфликта оправдает себя
Бывший футболист сборной рассказал, почему «Крылья» не уволили тренера
Меркель оценила план Трампа назначить Маска на должность в правительстве
Подполье сообщило об изнасилованиях выпускниц медвузов бойцами ВСУ
Россияне значительно увеличили траты на товары из-за рубежа
В Томске стая собак напала на ребенка
На ЗАЭС ввели в строй отключенную высоковольтную линию
Опубликованы стартовые составы «Оренбурга» и «Зенита» на матч РПЛ
Молодая мать попала под суд за то, что бросила 16-месячного ребенка дома ради свидания
Генсек НАТО впервые встретился с Трампом
WSJ: европейские авиакомпании заставляют пилотов летать над зонами боев на Ближнем Востоке
В Петербурге пенсионерка спасала сбережения и отдала мошенникам 2,3 млн рублей
Все новости